
Query Optimization for Selections using Bitmaps

Ming-Chuan Wu

Database Research Group, Computer Science Department

Technische Universit�at Darmstadt, Germany

wu@dvs1.informatik.tu-darmstadt.de

Abstract

Bitmaps are popular indexes for data warehouse (DW)
applications and most database management systems
o�er them today. This paper proposes query optimiza-
tion strategies for selections using bitmaps. Both con-
tinuous and discrete selection criteria are considered.
Query optimization strategies are categorized into static
and dynamic. Static optimization strategies discussed
are the optimal design of bitmaps, and algorithms based
on tree and logical reduction. The dynamic optimiza-
tion discussed is the approach of inclusion and exclusion
for both bit-sliced indexes and encoded bitmap indexes.

1 Introduction

Bitmap indexing has become a promising technique
for query processing in DWs. Variations of bitmap
indexes include bit-sliced indexes [14, 3], encoded
bitmap indexes (EBI) [18], bitmapped join indexes [13],
range-based bitmap indexes [20], and others[16].
For query operations, such as selections, aggregates,

and joins, query evaluation algorithms using bitmaps
have been proposed in recent years. In this paper, we
further explore the issues of query optimization using
bitmaps and concentrate on optimizing selections.
Indexes are used to speed up the evaluation of

selection conditions followed by the retrieval of desired
data. If no pipelining or parallelism is applied, the
query response time can be expressed by the sum of the
time of index processing plus the time of data retrieval.
If the selectivity of a query, which is de�ned as the
ratio of the cardinality of the �nal result to that of the
base table, is high, the time of data retrieval may close
in on the time of a costly table scan. For example,
for a selectivity about 35%, over 99:8% data pages
of the underlying table will be hit1. For such cases,

1The expected number of pages which are hit by se-

using indexes has negative e�ects on query performance.
Even for low selectivities, if the time of index processing
is high, the total time spent on index processing and
data retrieval may be longer than that of a table scan.
Consequently, query optimization techniques discussed
in this paper, which reduce the index processing time,
do not only contribute to a better query performance
at low selectivities, but also extend the feasibility of
bitmap indexes at medium selectivities.
We divide query optimization techniques into static

and dynamic ones. Static optimization is performed
at design-time. It includes optimal index designs and
improved algorithms for index processing. Dynamic
optimization is performed at run-time. It is achieved
by strategies which exploit run-time information, such
as constraints, statistics, or distribution information of
underlying data, to determine a better execution plan.
For index design, we explore the e�ects of two

di�erent selection types { continuous range selections
and discrete range selections. In [3], design criteria
for bit-sliced indexes with respect to continuous range
selections were proposed. We extend their results to
cover both types of selections and de�ne a new design
criterion for �nding global time-optimal indexes. As
for EBIs, we introduce well-de�ned encoding, which
improves the time e�ciency of the indexes without
sacri�cing space e�ciency.
As for algorithm design, we develop a tree-reduction

technique to improve the performance of the algorithm
RangeEval-Opt (proposed by [3]) for bit-sliced indexes.
For EBIs, logical reduction techniques are used to reduce
the index processing time.
The dynamic query optimization technique intro-

duced in this paper is the principle of inclusion and
exclusion. We show how this principle can be applied
to both bit-sliced indexes and EBIs. Cost models, both
analytical and probabilistic, are de�ned to determine a
better evaluation plan for selections.
The following example is used throughout this paper.

lecting k tuples from a table of n pages is computed by

n�
�
1�
Qk

r=1(pn�
n�1
n

�r+1)=(pn�r+1)
�
, where each page con-

tains p tuples. The hit rate depends, of course, highly on the value
p, clustering criteria, distribution of the indexed attribute, etc.

Example 1 Given are two attributes A and B of a table

T . Let the domain of A, denoted by Dom(A), be fAj100 �
A � 900; A 2 Z

+g and Dom(B) = fa; b; c; d; e; f; t; u; v; wg.
The cardinality of T is de�ned by jT j and the cardinality of

an attribute is de�ned by the cardinality of its domain.

The rest of the paper is organized as follows:
We revisit EBI and variants of bit-slicing brie
y in
section 2.1, and give a cost model for index performance
analysis in section 2.2. In section 3, we discuss
issues concerning static query optimization, including
index design in section 3.1 and algorithm design in
section 3.2. Strategies for dynamic query optimization
are introduced in section 4, followed by conclusions in
section 5.

2 Variants of bitmap indexes

The �rst member of the bitmap indexing family, named
simple bitmap indexing here, was introduced in the
1960's [12]. A classical example of simple bitmap
indexing is an index on an attribute GENDER. Suppose
that the domain of the attribute is fM;Fg. A simple
bitmap index on it consists of two bit vectors, one for
M and the other for F. The length of the bit vectors is
equal to the cardinality of the indexed table. The bits of
the bit vectorM are set if the tuples of the corresponding
bit-positions have GENDER=M. Likewise, the bit vector
for F is set for GENDER=F. If deleted tuples are only
tagged as \deleted" but kept in the database, as most
of the database management systems do, an extra bit
vector for \existing" tuples, E, is required. The bits of
E are set if the corresponding tuples are not deleted.

The space requirement of a simple bitmap index
is a linear function of the cardinality of the indexed
attribute and of the indexed table, and the index
processing time for a single value selection is a linear
function of the length of bitmaps. The sparsity of the
bit vectors increases with the cardinality resulting in
poor space utilization and high processing cost.

Many variations of bitmap indexing have been pro-
posed to solve the sparsity problems. Two common
objectives of the proposed methods are (1) reducing
the space complexity of the index and (2) improving
the performance of index processing. Solutions include
compressing bitmaps, e.g., through run-length encod-
ing, and transforming bitmap representation to tuple-id
lists. Although these two methods are quite e�cient in
reducing the space requirements of bitmap indexes, they
sacri�ce the advantages of bitmap indexing in query
processing | namely, the low-cost bitwise operations
in index processing and the capability of multiple index
scans2. In this paper, we discuss approaches that do
preserve the advantages of bitmap indexing. They are
encoded bitmap indexing (EBI) and bit-slicing.

2That is, combining multiple index structures to evaluate
logical conjunction or disjunction of selection predicates.

2.1 Bit-slicing and EBI revisited

2.1.1 Bit-slices

A bit-sliced index (named binary bit-sliced index later)
of an attribute is a bitwise projection of the at-
tribute [14]. For example, suppose that the attribute
A from Example 1 is de�ned as a two-byte short inte-
ger. A binary bit-sliced index on A consists of 16 bit
vectors and is de�ned as shown in Figure 13. Bits, b0

� � � A � � �

201
100
900

b15 : : : b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 � � � 0 0 0 1 1 0 0 1 0 0 1
0 � � � 0 0 0 0 1 1 0 0 1 0 0
0 � � � 0 1 1 1 0 0 0 0 1 0 0

Figure 1: A Binary Bit-Sliced Index on Attribute A

to b15, store the internal binary representation of the
corresponding attribute values. (b10 to b15 are all zeros,
since A� 900). The number of bit vectors is equal to
the length of the attribute's data type in bits, and the
length of each bit vector is equal to the cardinality of
the indexed table.
A bit-sliced index can also have non-binary or non-

uniform base. For example, a decimal, uniform-
based bit-sliced index on A has 3 components. Each
component has 10 bit vectors, i.e., each decimal digit
forms one 10-bit-vector component. Figure 2 shows
how these bits are set for the value 124. Bit-1 of the
component 3, bit-2 of the component 2 and bit-4 of
the component 1 are set to 1, and other bits are set
to 0. The notation, bij , denotes the j-th bit vector of
the component i, and the above index is expressed by
I<10;10;10>. To evaluate a single value selection using
I<10;10;10>, e.g., \A = 124", b31 , b

2
2 and b14 are read

and AND-ed to get the �nal bitmap for data retrieval.

A

� � �
124

� � �

b39b
3

8b
3

7 � � �b
3

2b
3

1b
3

0

0 0 0 � � � 0 1 0

component 3

b29b
2

8 � � �b
2

4b
2

3b
2

2b
2

1b
2

0

0 0 � � � 0 0 1 0 0

component 2

b19b
1

8 � � �b
1

5b
1

4b
1

3b
1

2b
1

1b
1

0

0 0 � � � 0 1 0 0 0 0

component 1

Figure 2: A Bit-Sliced Index on Attribute A with Base 10

In addition to equality bit-encoding (i.e., the bit is set
if the equality is satis�ed), the bitmaps can be range
bit-encoded. That is, for the attribute value 124, if
the bitmaps are �-encoded, then all bit vectors, b3i , of
component 3 where i � 1 are set to 1, and so on, as
Figure 3 shows. Since for the decimal base, all digits
are less than or equal to 9, bit-9 of all components are
all set and can therefore be ignored.

A

� � �
124

� � �

b38b
3

7 � � �b
3

3b
3

2b
3

1b
3

0

0 0 � � � 0 0 1 1

component 3

b28b
2

7 � � �b
2

4b
2

3b
2

2b
2

1b
2

0

0 0 � � � 0 0 1 1 1

component 2

b18b
1

7b
1

6b
1

5b
1

4b
1

3b
1

2b
1

1b
1

0

0 0 0 0 1 1 1 1 1

component 1

Figure 3: A Bit-Sliced Index on Attribute A with Base 10
and Range Bit-Encoding

3Later in this paper, we do not explicitly express the necessity
of an existing bitmap, unless the existing bitmap is not needed.

The choice of the base a�ects the space requirements
and the performance of the index in query processing.
For the above example, the binary bit-sliced index on
A has 16 bitmaps, while the 10-based bit-sliced index
with equality bit-encoding consists of 30 bitmaps. To
evaluate a selection predicate, such as \A = 124",
requires 16 bitmap scans using the binary bit-sliced
index, but only 3 bitmap scans with a decimal base
bit-sliced index. Generally speaking, for bit-sliced
indexes with uniform base, as the magnitude of the base
increases, the index requires more space but performs
better. Other query types are de�ned and discussed in
section 2.2.
The base of bit-sliced indexes can be non-uniform.

Non-binary, uniform-based bit-sliced indexes are often
less e�cient in both space and time than non-uniform-
based indexes with the same number of components.
For example, the smallest base for a 4-component
uniform-based bit-sliced index on A is < 6; 6; 6; 6 >.
Using non-uniform bases, the index with the base <

5; 6; 6; 6> requires less space than I<6;6;6;6>, and the
index with the base < 2; 8; 8; 8 > requires less bitmap
scans than I<6;6;6;6> in query processing4. In [3],
theorems are de�ned as guidelines for �nding bases of
either time optimal or space optimal n-component bit-
sliced indexes. They are de�ned as follows:

Space-optimum Given an integer n, the space-optimal
n-component bit-sliced index is the n-component bit-

sliced index with the base <

n�rz }| {
b�1; : : : ; b�1;

rz }| {
b; : : : ; b >,

where b= d n
p
jAje and r is the smallest positive integer

such that br(b�1)n�r � jAj.

Time-optimum Given an integer n, the time-optimal n-
component bit-sliced index is the index with the base
< 2; : : : ; 2| {z }

n�1

; d jAj

2n�1
e >.

Three points need to be stated here. First, the
optimal time is calculated based on the index processing
algorithms proposed in [3, 14]. Second, the optimal time
is only true for a subset of selection types, (continuous
range selections), which will be discussed further in
section 3. Third, the optimal space and time de�ned
above are subject to a given number of components,
i.e., they describe a local optimum. For example, a 3-
component space-optimal index might perform better
than a 5-component time-optimal index with respect
to both time and space, or vice versa. Globally, for
all bit-sliced indexes, those with binary uniform bases,
I<���;2;2>, are space optimal; in contrast, those with the
base equal to the cardinality of the indexed attribute,
I<jAj>, are time optimal. However, the global time
optimum (with or without space constraints), which is
the main interest of query optimization, requires further
classi�cation of query types and performance analysis

4Both < 5; 6; 6; 6> and < 2; 8; 8; 8> are well-de�ned bases[3].
A well-de�ned base, < bn;: : : ;b1 >, consists of �nite number of
components, i.e., n2Z+, such that bn=djAj=(

Qn�1
i=1 bi)e: In this

paper, we discuss only bit-sliced indexes with well-de�ned bases.

of query evaluation algorithms. These are discussed in
detail in section 3.

2.1.2 Encoded bitmap indexes

From the above discussion, we see that there exists a
dilemma between space and time in the design of bit-
sliced indexes. Another variation of bitmap indexing,
encoded bitmap indexing (EBI) proposed in [18], pro-
vides possibilities for solving such a dilemma between
space and time, with help of encoding functions.
EBI applies an encoding function on the attribute do-

main and builds a binary-based bit-sliced index on the
encoded domain. Through its binary base and domain
encoding, EBI minimizes the space requirement. At the
same time, it provides possibilities for query optimiza-
tion through well-de�ned encoding (discussed later).
For example, to build an EBI on attribute B of

Example 1, we de�ne an encoding function, M
B :

B ! fhb3b2b1b0ijbi 2 f0; 1g, 0 � i � 3g. The function
M
B maps the domain of B onto a set of four-bit

numbers, as Figure 4(a) shows. The number of bits
is determined by dlog2(jBj + 2)e. (The addition of 2 is
due to the inclusion of non-existing tuples and Nulls in
the attribute domain.)

B

a

c

f

t

v

b3

0
0
0
1
1

b2

0
1
1
1
1

b1

1
1
0
1
0

b0

0
0
1
1
1

Keys Encoding Keys Encoding

void 0000(2) e 0100(2)
NULL 0001(2) f 0101(2)
a 0010(2) t 1111(2)
b 0011(2) u 1110(2)
c 0110(2) v 1101(2)
d 0111(2) w 1100(2)

(a) Mapping table

fvoid =�b3�b2�b1�b0 fb=�b3�b2b1b0 fe=�b3b2�b1�b0 fu=b3b2b1�b0
fNULL=�b3�b2�b1b0 fc=�b3b2b1�b0 ff=�b3b2�b1b0 fv =b3b2�b1b0
fa =�b3�b2b1�b0 fd=�b3b2b1b0 ft=b3b2b1b0 fw=b3b2�b1�b0

(b) Retrieval min-terms

Figure 4: An Example of Encoded Bitmap Indexing on B

Based upon the mapping table, four bitmaps and
a set of retrieval Boolean functions are de�ned. A
retrieval Boolean function (or min-term5) is de�ned
for each attribute value, based on the encoded values.
One bit corresponds to one Boolean variable, and \0"
bits are expressed by the negation of the variables.
For example, the min-term for value a is �b3�b2b1�b0,
which corresponds to its encoded value 0010(2). Four
bitmaps of length equal to the cardinality of the indexed
table are constructed as follows. For any tuple in the
indexed table with o�set j, all j-th bits in all bitmaps
bi (i=0;: : :; 3) are assigned its encoded value hb3b2b1b0i,
e.g., for all tuples with B=a, b3=0, b2=0, b1=1 and
b0=0.
Using the EBI to evaluate a selection, e.g., \B 2

fa; b; c; dg", the retrieval min-terms of selected values

5A min-term of n Boolean variables is a logical conjunction of
all n variables, or their negations.

are selected to form a retrieval Boolean expression6, i.e.,
fa+fb+fc+fd, which is further reduced to �b3b1. That
is, ANDing the negation of b3 to b1, the 1's bits indicate
those tuples satisfying the selection condition.
In principle, an EBI is a binary bit-sliced index

de�ned on the encoded attribute domain. EBIs have
two advantages over binary bit-sliced indexes. First, the
number of bit vectors of an EBI is no larger than that
of bit-slices, since the number of bit vectors of an EBI
is decided by the logarithmic of the indexed attribute's
cardinality of base 2, while the number for binary bit-
slices is decided by the size of the indexed attribute's
data type. Furthermore, for deleted tuples, bit-sliced
indexes need an extra bit vector for the existing tuples,
while de�ning \non-existing" as void, 0, eliminates the
extra processing of the bit vector E [18]. It reduces not
only the space requirement but also the processing time.
Second, EBIs have more optimization potential than

binary bit-slices. Through some proper encoding
functions, the number of bit vectors accessed in query
processing can be reduced to one, while all the bit
vectors, including the bit vector E, in bit-sliced indexes
must be read. Cases for proper functions in speci�c
application environments in DWs are discussed in [18].
So far, we have discussed the two major approaches to

variate bitmap indexes. In the next subsection, we in-
troduce the cost models to evaluate index performance.

2.2 Cost models for performance analysis

Two metrics are used to evaluate the performance of an
index in this paper: space and time. Both are denoted
in terms of the number of bitmaps. We use space(I)
to denote the space requirement of the index I , and
time(I) to denote the number of bitmap scans for a
selection predicate evaluation using I . We discuss in
this paper only the cost of selection operations, and
selection predicates are de�ned by \A op V ", where A
is a single attribute, op 2 f<;�; >;�;=; 6=;2; 62g and
V is a single value for op 2 f<;�; >;�;=; 6=g or a set
of values for op 2 f2; 62g.
In the following discussion, we must distinguish the

time-function of evaluating continuous range operators
(f<;�; >;�;=; 6=g)7 from that of evaluating discrete
range operators (f2; 62g). Therefore, we de�ne timeC(I)
and timeD(I) to denote the time-functions of the
index I for evaluating continuous and discrete selection
predicates, respectively. A global time-function is
de�ned by the weighted sum of timeC(I) and timeD(I):

time(I) = � � timeC(I) + (1��) � timeD(I); (1)

where � is the probability of occurrence of continuous
range predicates.

6In this paper, we use + to denote the logical operator OR and
� to denote the logical operator AND.

7Without loss of generality, we consider equality operators
f=; 6=g as continuous range operators. This does not a�ect the
result of performance analysis.

3 Static query optimization

Query optimization using bitmap indexing can be
achieved by two di�erent, complementary approaches.
Static optimization is a design-time optimization. It in-
cludes optimal index design and improved algorithms
for index processing. Dynamic optimization is per-
formed at run-time. It is achieved by strategies
which exploit run-time information, such as constraints,
statistics, or distribution information of underlying
data, to determine a better execution plan.

3.1 Index Design: time optimal index

The following discussion concentrates on �nding time
optimal indexes for di�erent types of range selections.
We propose two algorithms for evaluating discrete
range selections and de�ne their time functions. Based
upon the time functions and the time functions intro-
duced in [3], we de�ne a new design criterion of global
time optimal indexes for both types of selections, with
and without space constraints. Finally, we explore the
design issues involving EBI.

Continuous range selections In [3], the algorithm,
RangeEval-Opt, for evaluation of continuous range se-
lection predicates using bit-sliced indexes was proposed.
Based upon this algorithm, the time-function of an n-
component bit-sliced index I with base <bn; : : : ; b1> and
range bit-encoding was derived as

timeC(I) = 2(n�

nX

i=1

1

bi
+
1

3
(
1

b1
� 1)) (2)

� 2n� �; for the worst case, (3)

where � = 1, if the range operator is one of f<;�; >;�g,
and � = 0, if the range operator is one of f=; 6=g.
From Equation (3), we can see that the time e�ciency

of a bit-sliced index is getting worse, as the number
of components, n, increases. In principle, the fewer
components a bit-sliced index has, the more time-
e�cient the index is.

However, the above time e�ciency analysis is only
true, if the range operators are con�ned to the set
f<;�; >;�;=; 6=g, i.e., continuous range selections.
Anomalies arise for discrete range selections. Although
discrete range predicates (A 2 V; or A 62 V) could be
replaced by a disjunction of equality selection predicates
(A = v), it would be very ine�cient to evaluate discrete
range predicate in such a way using the algorithm
RangeEval-Opt. Therefore, it is unreasonable to use
the time function based on RangeEval-Opt to analyze
the performance of the index in answering discrete range
selections.
Suppose that a bit-sliced index, I<10;10;10>, on

attribute A using a range bit-encoding scheme is
de�ned. For the selection predicate \A 2 f864; 764g",
12 bitmap scans are required using RangeEval-Opt,
since RangeEval-Opt treats and evaluates each value
in the operand set separately, namely A = 864 OR A =

764. Six bitmap scans are required for evaluating each
of the values. Obviously, discrete range predicates
can be evaluated more e�ciently by simply avoiding
reading the same bitmap more than once. In the
above example, the bitmaps for evaluating the two least
signi�cant digits | \6" and \4" are read twice using
RangeEval-Opt.
In order to de�ne a reasonable time-function for

evaluating discrete range predicates, we �rst develop
two algorithms for evaluating discrete range predicates
using bit-sliced indexes, and then de�ne the time-
function, timeD(I), based upon them.

Discrete range selections Algorithms 1 and 2 evalu-
ate discrete range predicates using bit-slices with range
bit-encoding and equality bit-encoding, respectively.
The basic idea of these algorithms is to avoid rescan-
ning the same bit vector for consequent equality tests.
Every required bitmap is scanned exactly once, and
all the comparisons involving the memory-resident bit-
segments are performed at a time.
The algorithms work as follows: Before evaluating

the predicate \A 2 V", the values in the set V are
parsed once to examine what bitmaps are required for
the evaluation. Then, all the required bitmaps are read
into the bu�er, and the algorithms loop for each value
in V and perform the equality comparisons digit by
digit. In reality, the total size of required bitmaps might
not �t into memory, therefore an implementation of the
algorithms might loop for the reading of bitmaps and
comparisons page by page.
Let us de�ne the time function of the algorithms

now. For evaluation of each distinguished digit in each
component, Algorithm 1 reads two bit vectors (except
one bit vector for 0 or vj;i � 1), while Algorithm 2
reads only one bit vector for each digit. For example,
to evaluate the equality-test involving the digit \6" of
the component-2, the bitmaps, b26 and b25 , are read in
Algorithm 1, and b26 is read in Algorithm 2.
Generally speaking, to evaluate the digit, �, in

component i, the bit vector representing � in the i-th
component, bi�, is read. (For range bit-encoded indexes,
bi��1, is also read, if 0 < � < bi�1.) Assuming that
the digits, vj;i (1 � j � k), are evenly distributed within
the range, 0 � vj;i < bi (1 � i � n), we de�ne the time
functions of Algorithms 1 and 2 as follows.
For range bit-encoding,

timeD(I)=
nX
i=1

k�1X
j=0

1

Cbi+k�1
k

�
min(2(k�j); bi)�C

k�1
j �Cbi

k�j

�
; (4)

and for equality bit-encoding,

timeD(I)=
nX
i=1

k�1X
j=0

1

Cbi+k�1
k

�
(k�j) � Ck�1

j �Cbi
k�j

�
; (5)

where Ca
b = a!

b!�(a�b)! denotes the number of combina-

tions of choosing b from a.
For the worst cases, or with a large number of k (the

cardinality of the selection range) both Algorithm 1 and

2 read all the bit vectors of the index. In such cases, the
time-function for discrete range evaluation is de�ned by
its space-function.

timeD(I)=space(I)=

�
n ; if bi=2; 1� i�nPn

i=1(bi��); if bi>2; 1� i�n
(6)

where � = 0 for equality bit-encoding, and � = 1
for range bit-encoding. As a result, the n-component
time optimal indexes for discrete selections are those
n-component space optimal indexes.

Global time optimal indexes The above discussion
shows that con
icting index design criteria exist for
continuous and discrete range selections. Since most
attributes might be involved in both types of selections,
it is a dilemma to choose either of the design criteria.
One straightforward solution is to design for each type
of selections an index, i.e., an index with possibly
fewest components for continuous range selections, and
another index with binary bases for discrete range
selections.

1

2

4

8

16

32

64

128

256

8 16 32 64 128 256 512 1024

of

 b
it

m
ap

 s
ca

ns
 fo

r
co

nt
in

uo
us

 s
el

ec
ti

on
s

of bitmap scans for discrete selections

Time-optimal Indexes

1
2

345678910

2
345678910

Time-optimal indexes for discrete selections
Time-optimal indexes for continuous selections

Figure 5: Time-Optimal Indexes, jAj=1024

A better approach is to �nd a global time optimal
index for both types of selections. In Figure 5,
time optimal indexes for either continuous selections
or discrete selections on an attribute A with jAj =
1024 are illustrated. A point on a curve represents
an index (labeled with the number of components), the
x-distance denotes the time of evaluating a discrete
selection predicate using the index, i.e., timeD(�),
and the y-distance denotes the time of evaluating a
continuous selection predicate using the index, i.e.,
timeC(�). The computation of the time functions is
based on Equations (2) and (6). As Figure 5 shows,
choosing an index which reduces the time of evaluating
continuous selection types will increase the time of
evaluating discrete ones, and vice versa. In order to �nd
the global time optimal index, we de�ne the following
time function:

� � time
C(I) + (1��) � time

D(I); I 2 I;

where I is the universal set of bit-sliced indexes, and
� is the probability of occurrence of continuous range
selections. The minimum of the function, which is
de�ned as the break-even point, characterizes the global
time optimal index for both types of selections.

Algorithm 1 (Discrete Selection, �-encoded)
Input: A bit-sliced index with the base, < bn; : : : ; b1 >, where n is

the number of components and b
i

j denotes the j-th bit vector
of i-th component.
Selection predicate A2V, where V= fv1; : : : ; vkg, where each
value vj (1 � j � k) is represented as vj;n � � � vj;1 (0 � vj;i <

bi; 1 � i � n).

Output:A bitmap vector representing the set of tuples which satisfy
the range-selection predicate, A 2 V.

Begin
1) IB = 1 and IBr = ;
2) initialize n arrays of bits Mi[bi�1],

1 � i � n, /* Mi[0] � � �Mi[bi�2] */

3) for i = 1 to n

4) for j = 1 to k

5) if (vj;i<bi�1) then Mi[vj;i] = 1
6) if (vj;i>0) then Mi[vj;i�1] = 1
7) for i = 1 to n

8) for j = 0 to bi � 2
9) if (Mi[j]=1) then read bi

j

10) for j = 1 to k

11) for i = 1 to n

12) if (vj;i=bi�1) then IB = IB � (bi
vj;i�1)

13) else if (vj;i=0) then IB = IB � (bi
vj;i

)

14) else IB = IB�(bi

vj;i
�bi

vj;i�1) /* 0<vj;i<bi�1 */

15) IBr = IBr + IB
16) return IBr

/* �lter out non-existing tuples before return */

End.

Algorithm 2 (Discrete Selection, =-encoded)
Input: A bit-sliced index with the base, < bn; : : : ; b1 >, where n is

the number of components and b
i

j denotes the j-th bit vector
of i-th component.
Selection predicateA 2 V, where V= fv1; : : : ; vkg, where each
value vj (1 � j � k) is represented as vj;n � � � vj;1 (0 � vj;i <

bi; 1 � i � n).

Output:A bitmap vector representing the set of tuples which satisfy
the range-selection predicate, A 2 V.

Begin
1) IB = 1 and IBr = ;
2) initialize n arrays of bits Mi[bi],

1 � i � n, /* Mi[0] � � �Mi[bi�1] */

3) for i = 1 to n

4) for j = 1 to k

5) Mi[vj;i] = 1
6) for i = 1 to n

7) for j = 0 to bi � 1
8) if (Mi[j]=1) then read bi

j

9) for j = 1 to k

10) for i = 1 to n

11) IB = IB � bi
vj;i

12) IBr = IBr + IB
13) return IBr

/* �lter out non-existing tuples before return */

End.

Note that in our example, for the sake of clarity,
we con�ne I to the set of IC [ID, where IC

(ID) denotes the time optimal indexes for continuous
(discrete) selections. As a matter of fact, this restriction
provides an e�cient way to �nd an approximate optimal
solution, since IC and ID describe boundaries of the
bit-sliced index space. One describes the optimum for
continuous selection evaluation, and the other describes
the optimum for discrete selection evaluation.
The two functions | � � timeC(IC)+ (1��) � timeD(IC)

and � � timeC(ID) + (1� �) � timeD(ID) | are plotted
in Figure 6(a), and the minimum point of the curves,
(10; 10), is the break-even point. That means a 10-
component bit-sliced index on attribute A (jAj = 1024)
is optimized for both types of selections. (At the point
n=10, the index is a a binary uniform bit-sliced index
with ten components.)
Figure 6(b) reveals the curves with � = 0:75, i.e.,

75% of the selections are continuous. The point
(5; 9:75) is the break-even point, which means the
5-component time optimal index for discrete selections
is also the global time optimal index.

Global time optimal indexes under space con-
straint Under a space constraint M , the global time
optimal index is de�ned by

min
�
� � time

C(I) + (1� �) � time
D(I)

�
; I 2 I0;

where I 0 = fI jspace(I) �Mg.
To avoid the exhaustive search in the whole in-

dex space, we also con�ne the search space to the
boundaries, i.e., �nd the smallest n and n0, such that

space(ICn)�M and space(IDn0)�M , and let I 00=fICi ji �
ng [fIDj jj � n0g. ICn and IDn0 denote the n-component
time optimal index for the continuous selection type and
the n0-component time optimal index for the discrete se-
lection type, respectively. Then, the approximate global
time optimal indexes under the space constraint M is
given by min

�
� � timeC(I) + (1��) � timeD(I)

�
; I 2 I00:

Following the example in Figure 6(b), suppose
that M = 50 bitmaps, i.e., maximal 50 bitmaps
can be stored in the system, then n0 = 3 and
n = 6, since space(ID3) = 28 and space(IC6) = 36.
Figure 7 shows that among the bitmap indexes in
fICi ji � 6g[fIDj jj � 3g, the minimal point is (5; 9:75).

Domain encoding An EBI is a binary bit-sliced
index on the encoded attribute domain. In principle,
all bit vectors of an EBI must be read in a query
evaluation. However, for a pre-de�ned set of selections,
performance of EBIs can be improved through well-
de�ned encoding [18]. With a well-de�ned encoding,
the number of bitmap scans in query processing is
minimized, while the space requirement of the index
is unchanged. Let us demonstrate how it works.

Let an EBI be de�ned on attribute A of Example 1
as Figure 8 shows, and a frequently asked selection
predicate is given as \100�A� 107". To evaluate the
selection, the retrieval min-terms for all the values in the
selection range are taken and form a logical disjunction
of min-terms | f100+f101+f102+f103+f104+f105+f106+
f107, which can be further reduced to �b9b8�b7b6�b5�b1�b0.
That is, for evaluating \100�A� 107", instead of 10

1
2
4
8

16
32
64

128
256
512

1 2 3 4 5 6 7 8 9 10T
ot

al
 T

im
e

(#
 o

f b
it

m
ap

 s
ca

ns
)

n (# of components)

Time-optimal Indexes

break-even
point

for continuous predicates
for discrete predicates

(a) �=0:5

1
2
4
8

16
32
64

128
256

1 2 3 4 5 6 7 8 9 10T
ot

al
 T

im
e

(#
 o

f b
it

m
ap

 s
ca

ns
)

n (# of components)

Time-optimal Indexes

break-even
point

for continuous predicates
for discrete predicates

(b) �=0:75

Figure 6: Global Time Optimal Indexes

1

2

4

8

16

32

64

128

256

1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(#
 o

f b
it

m
ap

 s
ca

ns
)

n (# of components)

Time-optimal Indexes under space constraint

break-even
point

n’=3 n=6

for continuous types
for discrete types

Figure 7: Global Time Optimal under Space Constraints

bitmap scans, seven bitmaps are accessed.
The encoding function shown in Figure 8 is a well-

de�ned encoding subject to the selection predicate
\100 � A � 107". There does not exist any other
encoding function which can result in a reduction of
more than three variables for logical disjunction of eight
min-terms.
We can see that in an environment where selection

patterns can be prede�ned, by a well-de�ned encoding
we improve the time e�ciency of an EBI in query pro-
cessing without sacri�ce of space e�ciency. However,
�nding a well-de�ned encoding is an NP-problem [18].
The involvement of human experts in the index design
phase is required. In [18], examples of well-de�ned en-
coding for some typical DW operations are given, in-
cluding hierarchical encoding and range based encoding.
A quick and dirty, but e�cient, variation of �nding

a well-de�ned encoding is to de�ne extra bit vectors

Keys Encoding Keys Encoding

void 0000000000(2) 103 0101001100(2)
NULL 0000000001(2) 104 0101010000(2)
100 0101000000(2) 105 0101010100(2)
101 0101000100(2) 106 0101011000(2)
102 0101001000(2) 107 0101011100(2)
� � � � � � � � � � � �

(a) Mapping Table

fvoid=�b9�b8�b7�b6�b5�b4�b3�b2�b1�b0 f103=�b9b8�b7b6�b5�b4b3b2�b1�b0
fNULL=�b9�b8�b7�b6�b5�b4�b3�b2�b1b0 f104=�b9b8�b7b6�b5b4�b3�b2�b1�b0
f100 =�b9b8�b7b6�b5�b4�b3�b2�b1�b0 f105=�b9b8�b7b6�b5b4�b3b2�b1�b0
f101 =�b9b8�b7b6�b5�b4�b3b2�b1�b0 f106=�b9b8�b7b6�b5b4b3�b2�b1�b0
f102 =�b9b8�b7b6�b5�b4b3�b2�b1�b0 f107=�b9b8�b7b6�b5b4b3b2�b1�b0

� � � � � �

(b) Retrieval Min-terms

Figure 8: A Well-De�ned Encoding for 100 � A � 107

for frequently asked selections. The resulting bitmap is
precomputed and stored in the system. This approach
increases the space requirement of EBIs, but since EBIs
are space optimal bit-sliced indexes, they have more
elbowroom for such space expansion.
For the worst cases, the time function of an EBI

(without considering the e�ect of well-de�ned encoding
and logical reduction, discussed later) is the same
as that of a binary bit-sliced index time(EBI) =
space(EBI) = n, where n = dlog2 jAje and A denotes
the indexed attribute.

3.2 Algorithm design

In this subsection, we discuss static query optimization
through better design of evaluation algorithms.

Tree reduction for RangeEval-Opt In [3], an algo-
rithm| RangeEval-Opt, has been proposed to improve
its former version proposed in [14]. Here we introduce
a further improvement of RangeEval-Opt by the execu-
tion tree reduction.
Taking the example in [3], a 3-component range

(�) bit-encoded bit-sliced index with decimal base
on attribute A and the predicate \A � 864" are
given. Using Algorithm RangeEval-Opt to evaluate
the predicate results in the execution tree as shown in
Figure 9(a).

6b2 b4
1

b5
2

b8
3

b7
3

U

U

U

U

(a) the original tree

1

b7
3

b8
3

1

4b1

b8
3

b7
3 b8

3

U

b8
3 1

b7
3 U

U

U

U

U

U

(b) the reduced tree

Figure 9: Transformation of Execution Tree for A � 864,
[denotes OR and \ denotes AND

Suppose that for a certain running state of a

database, the second digit of all the values of A is no
larger than 5, i.e., in the component-2 of the index,
the bit vectors b25 , b

2
6 , b

2
7 and b28 are all set to \1".

By replacing the corresponding bit vectors with \1"
vectors, we have the �rst tree in Figure 9(b). By
applying x�1=x (identity law) and x+1=1 (dominance

law) of Boolean algebra, the execution tree is reduced
down to one node, i.e., instead of 5 bitmap scans plus
4 logical operations (the tree in Figure 9(a)), only 1
bitmap (the bit vector b38 of component-3) is read.
The reduction of a partial sub-tree is depicted next.

Following the above example, if the most signi�cant
digit of A is no larger than 8, then the original execution
tree can be replaced by the tree in Figure 10(a).
Applying the rule x � 1 = x, we can connect the right
sibling subtree of the 1-node directly to the root, as
shown in Figure 10(b). We reduce the computation
complexity from 5 bitmap scans plus 4 logical operators
to 4 bitmap scans and 3 logical operators. For equality
predicates (=; 6=), the idea also works. Because of the
space limit, we do not provide a worked out example.

b7
3

U

U

b5
2

U

1 U

6b2 b4
1

(a) execution tree { A�864

1

b7
3

b5
2

b6
2

b4
1

b7
3

b5
2

b6
2

b4
1

U

U

U

U

U

U

U

(b) reduction of the execution tree

Figure 10: Transformation of Execution Tree for A � 864,
[denotes OR and \ denotes AND

Obviously, in order to be able to apply such a
reduction, the information about the percentage of
population of each bit vector is needed. Without much
extra cost, this information can be computed at the
time of index creation and can be synchronized every
time the data are uploaded in batch mode to the data
warehouse. The revised version of RangeEval-Opt,
which suppresses unnecessary bitmap scans as described
above, is de�ned in Algorithm 3.

Logical reduction for EBI In the last section, we in-
troduced well-de�ned encoding for EBI, which improves
the query performance of a prede�ned set of selection
patterns. However, ad-hoc queries dominate in the DW
environment. Given any query, EBIs transform the
selection predicates into a retrieval Boolean function.
Before directly evaluating the Boolean expression on
bitmaps, two potential reductions should be tested: re-
ducing the number of Boolean variables and reducing the
number of redundant logical operations. Both of them
can be done by performing a logical reduction on the
retrieval Boolean functions.
Each Boolean variable corresponds to a bit vector,

if one variable in the retrieval expression is reduced,

Algorithm 3 (Range evaluation with tree-reduction)
Input: A bit-sliced index with the base, < bn; : : : ; b1 >, where

n is the number of components and b
i

j denotes the j-th

bit vector of i-th component. For a bit vector, bij , �(bij)

denotes the percentage of \1"s in b
i

j .

Selection predicate A op v, where op 2 f<;>;�;�;=; 6=g.

Output:A bitmap vector representing the set of tuples which satisfy
the selection predicate, A op v.

Begin
IB = 1
if (op 2 f<;�g) then v = v�1
v = vnvn�1 � � � v1
if (op 2 f<;>;�;�g) then

if (v1 < b1�1) and (�(b1

v1) 6= 1) then IB = b1

v1

for i = 2 to n

if (vi 6=bi�1) and (�(bi

vi
) 6=1) then IB= IB�bi

vi

if (vi 6=0) and (�(bi

vi�1) 6=1) then IB= IB+bi

vi�1

else
for i = 1 to n

switch (vi)
case vi = 0:

if (�(bi
0) 6= 1) then IB = IB � bi

0

case vi = bi�1:
if (�(bi

vi�1) 6= 1) then IB = IB � bi
vi�1

else return (IB=;)
case 0 < vi < bi�1:

if (�(bi
vi
) 6= 1) and (�(bi

vi�1) 6= 1) then
IB = IB � (bi

vi
� bi

vi�1)
else if (�(bi

vi�1)=1) then return (IB=;)

else IB = IB � bi

vi�1

end switch
/* �lter out non-existing tuples before return */

if (op 2 f>;�; 6=g) then return IB else return IB
End.

the corresponding bit vector needs not be read, i.e.,
reducing the number of bitmap scans by 1. In addition,
by reducing the Boolean expression to its minimal form,
redundant operations are avoided.

For example, given is a selection on attribute B of
Example 1 \B 2 fe; f; t; u; v; wg". Suppose that an EBI
is built on B, as Figure 4 shows. The retrieval Boolean
function for the above selection will be fe + ff + ft +
fu + fv + fw. By applying logical reduction on it,

fe + ff + ft + fu + fv + fw

= �b3b2�b1�b0 + �b3b2�b1b0 + b3b2b1b0 + b3b2b1�b0

+b3b2�b1b0 + b3b2�b1�b0

= b3b2 + �b1b2 = b2(�b1 + b3)

the expression is reduced to b2(�b1 + b3). That is, the
time complexity is reduced from 4 bitmap scans plus 32
bitwise logical operations down to 3 bitmap scans plus
3 bitwise logical operations.

Some logical reduction algorithms have been intro-
duced in the literature, such as ordered binary decision
diagram (OBDD), binary decision diagram (BDD), tab-
ular method [1, 2, 8, 11, 15]. The details of how these
algorithms work are beyond the scope of this paper.

4 Dynamic query optimization

So far, we have discussed optimization that can be done
at design time. In this section, we introduce query
optimization strategies for run time. Cost models are
also de�ned for the cost-e�ciency analysis.

4.1 Principle of inclusion and exclusion

Selection evaluation consists of two phases | index
scanning phase and data fetching phase. In the index
scanning phase, selection predicates are evaluated
using index structures, and the results of this phase
are used as access plan in the data fetching phase.
The idea of the principle of inclusion and exclusion8

is as follows: by using a \coarse" �ltering (instead
of exact matching), the time of the index scanning
phase is reduced. However, the desired data as well as
some undesired data is included in the second phase.
Therefore extra tests must be performed to exclude
the unquali�ed data. If the extra cost for eliminating
super
uous tuples in the second phase is smaller than
the time-saving in the �rst phase, query performance
improves.

Dynamic optimization for EBI The basic idea
of the inclusion/exclusion approach is to identify the
conditions under which an approximate access plan in
the index scanning phase will still provide a globally
optimized query processing time.
We give an example to illustrate how the idea works.

Given is a selection predicate \B 2 fu; v; wg", and an
EBI on B is de�ned as Figure 4 shows. The retrieval
Boolean function for the predicate, fu+fv+fw, is reduced
to b3b2(�b1 + �b0). (The function is illustrated using a

Karnaugh Graph in Figure 11(a).) That means, 4 bitmap
scans plus 5 logical operators are required in the index
scanning phase.
However, if we include the value t in the selection

predicate and make it \B 2 ft; u; v; wg", as shown in
Figure 11(b), then the corresponding retrieval function,
ft+fu+fv+fw, is reduced to b3b2. The time complexity
is reduced from 4 bitmap scans plus 5 logical operators
down to 2 bitmap scans plus 1 logical operator.

null

(b)(a)

3

2

0 0

2
b

3
b

1 1

v
t u

w
t
v

u
w

b

b

b

b

b

b

Figure 11: Karnaugh Graph of Retrieval Boolean Functions

However, the deliberate inclusion of t in the index
scanning phase causes extra cost in the second phase.
For the above example, if we use the resulting bitmap of
b3b2 to fetch the data, some undesired tuples are also
read, which might cost extra I/O time, and in order to

8The name, the principle of inclusion and exclusion, has been
borrowed from the set theory, and it describes a di�erent scenario
here in this paper from that in the set theory.

�lter those undesired tuples out of the �nal result, extra
CPU time is involved. In spite of the extra cost, the
inclusion/exclusion approach might still result in better
query performance, due to the characteristics of block-
I/Os and di�erent distributions of underlying data.
In order to determine which of the two query execu-

tion plans (exact match or coarse �ltering) is better,
we propose the following cost model.

Cost model for inclusion-and-exclusion method We
de�ne the cost of query processing by the I/O time, i.e.,
the total number of pages read in both index scanning
and data fetching phases. Let us �rst de�ne the terms
and the extra data structure used in the cost model.
The page-level bitmap of a bitmap contains informa-

tion about the distribution of the \1" bits into the log-
ical page space of the indexed table. That means, the
\1" bits in the page-level bitmap indicate those logi-
cal pages which contain the tuples represented by the
original bitmap, (named tuple-level bitmap). Figure 12
depicts the construction of a page-level bitmap from its
tuple-level bitmap. The tuple-level bitmap is divided
into m p-bit segments, except the last one. Each p-bit
segment of the tuple-level bitmap corresponds to one
bit in the page-level bitmap. The bits in the page-level
bitmap are set, if any bit in their corresponding p-bit
segments is set. Other terms are de�ned in Table 1.

m bit segments

n bits

p bits

p bits

p bits

...
...

1

0

1

1

...
...

...
...

...
...

...
...

1

0

0
0

0

1

0

...
...

...
...

b

bitmap

page-level bitmap
of

1
1

1

1

b

0

Figure 12: Transforming Tuple-ids to Data-Block-ids

Notation Description

b a bit vector
jbj the number of bits in b
T a table
jTj the cardinality of T, i.e., jbj = jTj
w(T) width of table T in bytes
� logical page size in bytes
p = b �

w(T)
c blocking factor (the number of tuples per

page for T)

b
p

a page-level bitmap of b with respect to p
�(v) the number of \1" bits in the bit vector v

Table 1: Notations Used in the Cost Analysis

For the above example, the cost-e�ciency analysis is
performed as follows. Using the exact-match approach,
in the index scanning phase the bitmap IB = b3b2(�b1+
�b0) is evaluated, and it is used to access the desired

tuples in the data fetching phase. The total I/O cost of
this approach will be

4 � jbj

8�
+�(IB

p

) pages; (7)

where the �rst term denotes the cost of index scanning
phase, and the second one denotes the cost of data
fetching phase. On the other hand, using the approach
of inclusion/exclusion, the bitmap B = b3b2 is
evaluated in the index scanning phase, and B is used to
fetch data in the second phase. The total I/O cost is

2 � jbj

8�
+�(B

p

) pages: (8)

Obviously, if Equation (8) is less than Equation (7), it is
bene�cial to perform the inclusion/exclusion approach.

2 � jbj

8�
+�(B

p

) <
4 � jbj

8�
+ �(IB

p

) =) �(B
p

)��(IB
p

) <
jbj

4�

A general form for the cost-e�ciency analysis can be
derived as follows.

�(b
p

�)� �(b
p

) <
� � jbj

8�
; (9)

where b is the resulting bitmap of the exact-match
approach, b� is the resulting bitmap of the inclu-

sion/exclusion approach, b
p

and b
p

� are the page-level
bitmaps of b and b�, respectively, and � is the number
of variables (bitmaps) which are reduced from the re-
trieval Boolean function after the inclusion of additional
values into the selection predicate. Simply speaking, the
right hand side of Inequality (9) denotes the total num-
ber of I/O-saving in pages gained through the principle
of inclusion and exclusion in the index scanning phase,
and the left hand side denotes the additional I/O cost of
reading the extra data pages arising from the approach
of inclusion/exclusion in the data fetching phase. If
Inequality (9) is true, then the inclusion/exclusion ap-
proach provides a better query performance.
In practice, the calculation of the term �(b

p

�)��(b
p

)

(in Inequality (9)) could be expensive and I/O intensive,
since both page-level bitmaps b

p

and b
p

� have to be
read. In order to reduce the overhead of optimization,
the term above can be replaced with an approximation
using a statistic model. It can be estimated by the
expected number of page accesses. The expected number
of page accesses of a query is de�ned as a function of
the selectivity of the query and can be computed by the
following probability model.
Let n, p and k denote the total number of data pages

of a selected table, the blocking factor of a page and
the number of selected tuples of a query (estimated
by selectivity of a query), respectively. The term |
prob(xjn;pk) denotes the probability that exactly x pages
are accessed subject to n, p and k. Then, the expected
number of data page accesses in processing a query Q,
denoted by E(Q), is calculated by

E(Q) =
nX
i=1

i � prob(ijn;p
k

); where (10)

prob(ijn;pk) =
Cn
i

Cpn
k

(Cip
k �Ci

1 � C
(i�1)p
k + Ci

2 � C
(i�2)p
k +

� � �+ (�1)iCi
i �C

(i�i)p
k)

The inclusion/exclusion approach increases the selec-
tivity of the query by including additional values into
the range selection. Say, the number of selected tuples
is changed to k0 and the revised query is denoted by Q0.
Then, Inequality (9) can be estimated by

E(Q0)�E(Q) <
� � jbj

8�
(11)

The probability, prob(ijn;pk), is proven in [19].

What to include Another issue concerning the inclu-
sion/exclusion approach is what to include. It itself is
an optimization problem. Let us formally de�ne the
cardinality of a selection range �rst. Given an attribute
A and a range selection on A, \A op V ", the cardinal-
ity of the selection range is the cardinality of the set
S, such that S = fvjv 2 A; and v op V g. If V � A,
then jSj = jV j. Following the above example, for the
selection, \B2fu; v; wg", since fu; v; wg�A, the cardi-
nality of the selection range is jfu; v; wgj=3. For later
discussion, we assume that V �A.
To �nd out what to include, One must answer the

following questions, to avoid unnecessary attempts: how
many additional values must be included at least in the
operand set, V , in order to make a further reduction?
And, how much reduction can be achieved?

To answer the �rst question, a simple test on the
operand set, V , is performed. If the cardinality of the
selection range, denoted by jV j, is even, then at least
2i�jV j values must be included in V to make a further
reduction possible, where i is the smallest integer such
that 2i�jV j�0. If jV j is odd, then a further reduction is
possible by including one additional value into V . The
reason why the minimum number of additional inclusion
is 1 or 2i�jV j is behind the idea of making 2j (j2Z+)

neighboring cells in a Karnaugh graph, as Figure 11(b)
shows. Note that this is only the necessary condition.
Satisfying this condition does not imply the existence
of a reduction.
To answer the second question, we should explore the

relationship between the cardinalities of selection ranges
and the probably minimal numbers of bitmap scans in
the index scanning phase. Assuming the existence of a
well-de�ned encoding, Table 2 lists the minimal number
of bitmap scans with respect to di�erent cardinalities
of selection ranges for attribute A and jAj = 8. For
example, if we extend the cardinality of the selection
range from 3 up to 4, for the best case, the number of
bitmap scans could drop from 3 down to 1.
The computation of the table is based on Property 3.1

in [18], which describes the following scenario: for
best cases, the number of bitmap scans in processing
a selection on A is (dlog2 jAje � i) + �(�; i), where � is
the cardinality of the selection range and i is the largest
integer, such that �

2i � 1. The function, �(�; i) is de�ned
as follows.

�(�; i) =

�
0; if (� mod 2i) = 0;

i�
; if ((� mod 2i) mod 2
+1) = 2
 ;
 = 0; : : : ; i�1

Cardinality of Optimized # of
selection (�) bitmap scans

1 3
2 2
3 3
4 1

5 3
6 2
7 3
8 0

Table 2: Optimized Number of Bitmap Scans with respect
to Cardinality of Selection Range

Note that there does not exist an unconditional
implication from the cardinality of selection range to
the number of bitmap scans in Table 2. Nevertheless,
the numbers provide for a quick estimation of the saving
in the index scanning phase and the cost arising in the
data fetching phase. For an extreme example, if the
cardinality of selection is expanded to 8 in Table 2,
although the cost of the index scanning phase is reduced
to 0, a table scan is required to access all the data, since
all attribute values are included in the predicate.
In addition, Table 2 is used not only to check how

much reduction an inclusion might lead to, but also to
determine how e�ective an inclusion is. An e�ective
inclusion is one that can lead to further reduction of
the retrieval function. For example, to expand the
cardinality of a selection from 4 to 6 can never be an
e�ective inclusion.
For some situations, a less optimal solution might

perform even better than an optimal solution. For
example, instead of �nding the best inclusion, we could
coarsely expand the cardinality of selection range by
�nding the common variables of the retrieval min-terms.
For the example in the beginning of this section, the
common variables of b3b2�b1 and b3b2�b0 are b3b2, i.e.,
expanding b3b2(�b1+�b0) to b3b2. In this example, it
is also the best expansion. Although there might exist
another better way of inclusion, the cost of �nding it
might not be compensated by its bene�t. Algorithm 4
�nds the set of common variables of the retrieval
Boolean function at a complexity of O(jV j).
So far, we have discussed the application of the

inclusion/exclusion approach on EBIs for the selection
operator \2". For �nite domains, other operators,
such as 62;=; 6=; < and >, can all be rewritten using
2. Therefore, the above discussion does not lose its
generality. In addition, if the encoding function of an
EBI is total-order preserving9, another way of applying
the inclusion/exclusion approach is discussed next.

Dynamic optimization for bit-slices For both bit-
sliced indexes and EBIs with total-order preserving
encoding, there exists a total ordering in the bitmaps
that is the same as that in the attribute domain. With
this characteristic, the principle of inclusion/exclusion

9An encoding function is called total-order preserving, if there
exists a total order in the domain of the indexed attribute, and
the same total order still exists in the encoded attribute domain.

Algorithm 4 (Finding common variables)
Input: Selection predicate A 2 V , V = fv1; : : : ; vkg

An EBI on A with the mapping function M : A !
fhbn�1 � � � b0ijbi 2 f0; 1g; 0 � i < ng
A set of Boolean variables used in the retrieval min-terms,
fbn�1; : : : ;b0g

Output:A set of common variables, C, of the retrieval function for
A 2 V

Begin
set C = ;
initialize an array of bits, B[n]
set B = 1
for i = 2 to k

B = B � (M (vi�1)� M (vi))
/* � denotes exclusive-NOR, � denotes AND,

and M(vi) denotes the encoded value of vi */

for i = 0 to n�1
if B[i] = 1 then C = C [fbig

return C

End.

can be applied in the following way.
Let us �rst quickly review selection evaluation using

bit-sliced indexes. Following the example in section 3.2,
to evaluate the predicate \A � 864", the execution tree
is shown in Figure 9(a).
The idea of the principle of inclusion/exclusion

is to expand the range of the selection such that
tree-reduction on the execution tree occurs, e.g., by
enlarging the range of the selection from \A � 864" to
\A � 894", the execution tree is reduced as Figure 13(a)
shows.

b8
3

b7
3

b2
8 b4

1

U

U

U

(a) A � 894

b7
3

b8
3 b2

6

U

U

(b) A�869

Figure 13: Execution Trees for A � 894 and A � 869

In addition, if we change the predicate to \A �
869", the execution tree is reduced further as shown in
Figure 13(b). We can see that the scale of enlargement
in selection ranges does not imply the scale of reduction
in bitmap scans. The latter case of the last example
reduces the number of bitmap scans down to 3, while
the former case reduces the number of bitmap scans to
4, in spite of larger expansion of the selection range.
Inequality (11) is also used as the cost model to de-

termine whether an expansion in selection range im-
proves the query performance or not. However, in-
stead of using page-level bitmaps to compute the extra
cost arising in the data fetching phase, the distribution
of the underlying data is used to estimate the change
in query selectivity. For the above example, assuming
the attribute values of A are evenly distributed within
100 � A � 900, changing the predicate from \A � 864"
to \A � 869" increases the query selectivity by 5

801 ,

while changing the predicate to \A � 894" increases
the query selectivity by 30

801 .
For numeric data types with even distribution, it

is preferable to expand the selection range of the
least signi�cant digit �rst, since the higher the query
selectivity increases, the higher the extra cost in the
data fetching phase. Because of space limitation, we do
not give another example for EBIs.

5 Conclusions

We discussed issues of static and dynamic query
optimization for bit-sliced indexes and encoded bitmap
indexes. The main contributions of this paper are:

For static query optimization,

� we divide selections into continuous and discrete
ones. We have proposed two algorithms for eval-
uation of discrete selections using bit-sliced indexes.
Time complexities of these two algorithms are also
derived.

� We have de�ned a global time function of bit-sliced
indexes for both types of selections, and the \break-
even" point is de�ned as the minimum point of the
function. The \break-even" point serves as a new
design criterion for global time-optimal bit-sliced
indexes, with respect to both types of selections.

� The e�ect of space constraints on �nding a global
time-optimal index is studied.

� In [3], an algorithm RangeEval-Opt was proposed
to improve its former version proposed in [14]. In
this paper, we have proposed further improvements
on RangeEval-Opt using the \tree-reduction" tech-
nique.

� To optimize the processing time of EBIs, we propose
to use known methods, such as ordered binary
decision diagram (OBDD), binary decision diagram
(BDD), or tabular method to minimize the retrieval
Boolean function.

For dynamic optimization,

� The principle of inclusion and exclusion is intro-
duced, and its application to both EBIs and bit-
sliced indexes is discussed.

� Cost models, both analytical and probabilistic, have
been de�ned to select better execution plans.

� An algorithm is de�ned to quickly �nd a set of
common variables in the retrieval Boolean function.
This set of common variables serves as the retrieval
function for the \coarse" �ltering in the approach of
inclusion and exclusion.

Future work includes:

� De�ning heuristics or tools that assist human ex-
perts to de�ne well-de�ned encodings.

� To apply the inclusion/exclusion principle in dy-
namic query optimization, �nding what to include
or how to expand is itself an optimization problem.
For EBIs, we have proposed an algorithm to �nd
the set of common variables in the retrieval Boolean

function. However, for bit-sliced indexes, guidelines
for quickly �nding how to expand the selection range
are still required.

Acknowledgment I am grateful to Alex Buchmann
for his detailed comments that enabled to improve
this paper and also to Ron Bourret for his reviewing
regarding the presentation of this paper.

References

[1] R.E. Bryant, Graph-based algorithms for Boolean function
manipulation, IEEE Trans. on Computers, 35(6), 1986.

[2] R.E. Bryant, Symbolic Boolean Manipulation with Or-
dered Binary-Decision Diagrams, ACM Computing Sur-
veys, 24(3), 1992.

[3] C.-Y. Chan, Y.E. Ioannidis, Bitmap Index Design and
Evaluation, SIGMOD Conf., Seattle, 1998.

[4] C.-Y. Chan, Y.E. Ioannidis, Bitmap Index Design and
Evaluation, CS Dept., Univ. of Wisconsin-Madison,
http://www.cs.wisc.edu/�cychan/paper101.ps, 1997.

[5] J.-H. Chu, G.D. Knott, An Analysis of B-Trees and Their
Variants, Information Systems, 14(5), 1989.

[6] D. Comer, The Ubiquitous B-Tree, ACM Computing Sur-
veys, 11(2), June 1979.

[7] D.J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stone-
braker, D. Wood, Implementation Techniques for Main
Memory database Systems, SIGMOD, New York, 1984.

[8] J. Feigenbaum, S. Kannan, M.Y. Vardi, M. Viswanathan,
Complexity of Problems on Graphs Represented as OBDDs,
AT&T Technical Report: 97.1.1, 1996.

[9] G. Graefe, Query Evaluation Techniques for Large
Databases, ACM Computing Surveys, 25(2), 1993.

[10] K. K�uspert, Storage Utilization in B�-Trees with a Gener-
alized Over
ow Technique, Acta Informatica, 19, 1983.

[11] E.J. McCluskey, Minimisation of Boolean functions, Bell
System Technical Journal, 35(6), 1956.

[12] P. O'Neil, Model 204 Architecture and Performance,
Springer-Verlag LNCS 359, 2nd Intl. Workshop on High Per-
formance Transactions Systems, Asilomar, CA, 1987.

[13] P. O'Neil, G. Graefe, Multi-Table Joins Through Bitmapped
Join Indices, SIGMOD Record, 24(3), 1995.

[14] P. O'Neil, D. Quass, Improved Query Performance with
Variant Indexes, SIGMOD, Tucson, Arizona, May 1997.

[15] W.V. Quine, The Problem of Simplifying Truth Functions,
American Mathematical Monthly, 59(8), 1952.

[16] S. Sarawagi, Indexing OLAP Data, Bulletin of the Technical
Committee on Data Eng., Vol. 20, No. 1, Mar 1997.

[17] L.D. Shapiro, Join Processing in Database Systems with
Large Main Memories, ACM TODS, 11(3), 1986.

[18] M.C. Wu, A. Buchmann, Encoded Bitmap Indexing for
Data Warehouses, 14th ICDE, Orlando, 1998.

[19] M.C. Wu, Query Optimization for Selections using
Bitmaps, Tech. Report, DVS98-2, DVS1, CS Dept, Tech-
nische Universit�at Darmstadt, 1998.

[20] K.L. Wu, P.S. Yu, Range-Based Bitmap Indexing for High
Cardinality Attributes with Skew, Research Report, IBM
Watson Research Center, May 1996.

